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Abstract
We first give a comprehensive review of the renormalization-group method
for global and asymptotic analysis, putting an emphasis on the relevance to
the classical theory of envelopes and on the importance of the existence of
invariant manifolds of the dynamics under consideration. We clarify that
an essential point of the method is to convert the problem from solving
differential equations to obtaining suitable initial (or boundary) conditions:
the RG equation determines the slow motion of the would-be integral constants
in the unperturbative solution on the invariant manifold. The RG method is
applied to derive the Navier–Stokes equation from the Boltzmann equation,
as an example of the reduction of dynamics. We work out how to obtain the
transport coefficients in terms of the one-body distribution function.

PACS numbers: 05.10.Cc, 05.20.Dd, 02.30.Hq, 02.40.Vh

1. Introduction

The concept of the RG was introduced by Stuckelberg and Petermann as well as Gell-Mann
and Low [1] in relation to an ambiguity in the renormalization procedure of the perturbation
series in quantum field theory (QFT). However, the essential nature of the RG is exact and
hence non-perturbative, which was revealed and emphasized by Wilson [2]. Subsequently, as
is well known, the machinery of the RG has been applied to various problems in QFT and
statistical physics with a great success [1].

The essence of the RG in quantum field theory (QFT) and statistical physics may be
stated as follows: let �(φ, g(�),�) be the effective action (or thermodynamical potential)
obtained by the integration of the field variable with the energy scale down to � from infinity
or a very large cut-off �0. Here, g(�) is a collection of the coupling constants including
the wavefunction renormalization constant defined at the energy scale at �. Then, the RG
equation may be expressed as a simple fact that the effective action as a functional of the field
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variable φ should be the same, irrespective to how much the integration of the field variable is
achieved, i.e.,

�(φ, g(�),�) = �(φ, g(�′),�′). (1.1)

If we take the limit �′ → �, we have

d�(φ, g(�),�)

d�
= 0, (1.2)

which is the Wilson RG equation [2] or the flow equation in the Wegner’s terminology [3];
note that equation (1.2) is rewritten as

∂�

∂g
· dg

d�
= − ∂�

∂�
. (1.3)

If the number of the coupling constants is finite, the theory is called renormalizable. In this
case, the functional space of the theory does not change in the flow given by the variation
of �.

Owing to the very non-perturbative nature, the RG has at least two merits: (A)
resummation of the perturbation series. Applying the RG equation of Gell-Mann–Low
type [1] to perturbative calculations up to first lowest orders, a resummation in the infinite
order of diagrams of some kind can be achieved. That is, the RG method gives a powerful
resummation method [4]. (B) Construction of infrared effective actions. The RG of Wilson
type [2] provides us with a systematic method for constructing low-energy effective actions
which are asymptotically valid in the low-frequency and long-wavelength limit.

An appearance of diverging series is a common phenomenon in all mathematical sciences
not restricted in QFT, and some convenient ‘resummation’ methods are needed and developed
[5]. Deducing a slow- and long-wavelength motion is one of the basic problems in almost
all the fields of physics; for example, statistical physics including the physics of the pattern
formation and the theories of collective motion in a many-body system. The problems may
be collectively called the reduction problem of dynamics. The RG method [6–12] might be a
unified method for the reduction of dynamics as well as a powerful resummation method.

It is worth noting that one can draw a clear geometrical image for the reduction of
dynamical systems. Let W(t) be an n-dimensional dynamical system governed by the
evolution equation,

dW
dt

= F(W, t), (1.4)

where F is an n-dimensional vector; the dimension n may be finite or infinite. When the
dynamics is reduced to an m-dimensional system with m being smaller than or equal to
n, the vector W(t) approaches a well-defined m-dimensional manifold M embedded in the
n-dimensional phase space, as shown in figure 1; then the geometrical object M is called an
attractive manifold. If after some time W(t) is confined in the manifold M,M is called an
invariant manifold. Furthermore, when the dynamics on M is slow, M is also called a slow
manifold. Let any point W within the manifold M be given by the relation W = R(s) with
an m-dimensional parameter s(t). Then, the reduced dynamics is given by

ds

dt
= G(s), W = R(s), (1.5)

where the first equation with the vector field G(s) defined on M gives the reduced dynamics
within the manifold M and the second is the representation of M. In the quantum field theory,
the dynamical variable W corresponds to the set of coupling constants and the renormalizability
may be interpreted as the existence of an invariant manifold in the space of coupling constants;
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Figure 1. The geometrical image of the reduction of the dynamics. The dynamical variable W(t)

in the n-dimensional phase space approaches to and after some time is eventually confined in the
well-defined manifold M as t increases.

Figure 2. A family of curves F(x, y, τ0) = 0 parameterized with τ0 and its envelope defined by
G(x, y) = 0.

the increasing time t and the vector field G(s) correspond to the decreasing energy cut-off �

and the β function, respectively.
In this paper, (1) we show that the RG gives a powerful and systematic method for the

reduction of dynamics and also provides a transparent way for the construction of the attractive
slow manifold. (2) We apply the method to have the fluid dynamical limit of the Boltzmann
equation as an example of the reduction of dynamics and the construction of the slow manifold
[12]. We derive the Navier–Stokes equation explicitly from the Boltzmann equation for the
first time; the microscopic expressions of the transport coefficients are given. (3) We will put
an emphasis on the relation of the underlying mathematics of the RG method with the classical
theory of envelopes in mathematical analysis [7–10, 13].

2. The RG method and the classical theory of envelopes

We here give a brief review of the theory of envelopes. Although the theory can be formulated
in higher dimensions [7–9], we consider here envelope curves, for simplicity.

Let {Cτ }τ be a family of curves parameterized by τ in the x–y plane; here, Cτ is
represented by the equation F(x, y, τ ) = 0. We suppose that {Cτ }τ has the envelope E,
which is represented by the equation G(x, y) = 0, as shown in figure 2. The problem is to
obtain G(x, y) from F(x, y, τ ).

Now let E and a curve Cτ0 have the common tangent line at (x, y) = (x0, y0), i.e., (x0, y0)

is the point of tangency. Then, x0 and y0 are functions of τ0: x0 = φ(τ0), y0 = ψ(τ0) and of
course G(x0, y0) = 0. Conversely, for each point (x0, y0) on E, there exists a parameter τ0.
So we can reduce the problem to get τ0 as a function of (x0, y0); then, G(x, y) is obtained as
F(x, y, τ (x, y)) = G(x, y). Note that since there is a relation G(x0, y0) = 0 between x0 and
y0, τ0 is actually a function of x0 or y0. τ0(x0, y0) can be obtained as follows.

Since the tangent line of E at (x0, y0) is perpendicular to the normal direction of
F(x, y, τ ) = 0 at the same point, one has Fx(x0, y0, τ0)φ

′(τ0) + Fy(x0, y0, τ0)ψ
′(τ0) = 0.
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On the other hand, differentiating F(x(τ0), y(τ0), τ0) = 0 with respect to τ0, one also has
Fx(x0, y0, τ0)φ

′(τ0) + Fy(x0, y0, τ0)ψ
′(τ0) + Fτ0(x0, y0, τ0) = 0. Combining the last two

equations, we have

Fτ0(x0, y0, τ0) ≡ ∂F (x0, y0, τ0)

∂τ0
= 0. (2.1)

This is the basic equation of the theory of envelopes, from which τ0 is obtained in terms of
(x0, y0). Note that the envelope equation has the similar form as the RG equation.

One can thus eliminate the parameter τ0 to get a relation between x0 and y0; G(x, y) =
F(x, y, τ0(x, y)) = 0, with the replacement (x0, y0) → (x, y). G(x, y) is called the
discriminant of F(x, y, t).

When the function F has an additional dependence on a vector C(τ ), i.e., F =
F(x, y, τ,C(τ )), the envelope equation reads

Fτ0(x0, y0, τ0,C(τ0)) ≡ ∂F (x0, y0, τ0)

∂τ0
+

∂C

∂τ0

∂F (x0, y0, τ0,C(τ0))

∂C
= 0. (2.2)

Comments are in order here: (1) when the family of curves is given with the function
y = f (x, τ ), the envelope equation is reduced to ∂f /∂τ0 = 0; the envelope is given by
y = f (x, τ0(x)). (2) The equation G(x, y) = 0 may give not only the envelope E but also a
set of singularities of the curves {Cτ }τ .

3. The RG method: a simplest example

In this section, using a simplest example we show how the RG method works for obtaining
global and asymptotic behaviour of solutions of differential equations. We shall present the
method so that the reader will readily see that the notion of envelopes is intrinsically related
to the method. We shall emphasize that an essential point of the method is tuning the initial
condition at an arbitrary time t0 perturbatively along with solving the perturbative equations
successively. One will see that the reasoning for various steps in the procedure and the
underlying picture is quite different from the original ones given in [6]. We believe, however,
that the present formulation emphasizing the role of initial conditions and the relevance to
envelopes of perturbative local solutions straightens the original argument and is the most
comprehensive one.

Let us take the following simplest example to show our method:

d2x

dt2
+ ε

dx

dt
+ x = 0, (3.1)

where ε is supposed to be small. The solution to equation (3.1) reads x(t) =
Ā exp

(− ε
2 t

)
sin

(√
1 − ε2

4 t + θ̄
)
, where Ā and θ̄ are constants.

Now, let us obtain the solution around the initial time t = t0 in a perturbative
way, expanding x as x(t, t0) = x0(t, t0) + εx1(t, t0) + ε2x2(t, t0) + · · ·, where xn(t, t0) (n =
0, 1, 2, . . .) satisfy ẍ0 + x0 = 0, ẍn+1 + xn+1 = −ẋn.

The initial condition may be specified by

x(t0, t0) = W(t0). (3.2)

We suppose that the initial value W(t0) is always on an exact solution of equation (3.1) for
any t0. We also expand the initial value W(t0); W(t0) = W0(t0) + εW1(t0) + ε2W2(t0) + · · ·,
and the terms Wi(t0) will be determined so that the perturbative solutions around different
initial times t0 have an envelope. Hence, the initial value W(t) thus constructed will give the
(approximate but) global solution of the equation.
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Let us perform the above program. The lowest solution may be given by x0(t, t0) =
A(t0) sin(t + θ(t0)), where we have made it explicit that the constants A and θ may
depend on the initial time t0. The initial value W(t0) as a function of t0 is specified as
W0(t0) = x0(t0, t0) = A(t0) sin(t0 + θ(t0)). We remark that the zeroth-order solution is a
neutrally stable solution; with the perturbation ε �= 0, the constants A and θ may move slowly.
We shall see that the envelope equation gives the equations describing the slow motion of A

and θ .
The first-order equation now reads ẍ1 + x1 = −A cos(t + θ), and we choose the solution

in the following form: x1(t, t0) = −A
2 · (t − t0) sin(t + θ), which means that the first-

order initial value W1(t0) = 0 so that the lowest order value W0(t0) approximates the
exact value as closely as possible. Similarly, the second-order solution may be given by
x2(t) = A

8 {(t − t0)
2 sin(t + θ) − (t − t0) cos(t + θ)}, thus W2(t0) = 0 again for the present

linear equation.
It should be noted that the secular terms have appeared in the higher order terms, which are

absent in the exact solution and invalidate the perturbation theory for t far from t0. However,
with the very existence of the secular terms, we could make Wi(t0) (i = 1, 2) vanish and
W(t0) = W0(t0) up to the third order.

Collecting the terms, we have

x(t, t0) = A sin(t + θ) − ε
A

2
(t − t0) sin(t + θ)

+ ε2 A

8
{(t − t0)

2 sin(t + θ) − (t − t0) cos(t + θ)}, (3.3)

and more importantly W(t0) = W0(t0) = A(t0) sin(t0 + θ(t0)), up to O(ε3). We remark that
W(t0) describing the solution is parameterized by possibly slowly moving variable A(t0) and
φ(t0) ≡ t0 + θ(t0) in a definite way.

Now we have a family of curves {Ct0}t0 given by functions {x(t, t0)}t0 parameterized with
t0. They are all on the exact curve W(t) at t = t0 up to O(ε3), but only valid locally for t near
t0. So, it is conceivable that the envelope E of {Ct0}t0 which contacts with each local solution
at t = t0 will give a global solution. Thus, the envelope function x

E
(t) coincides with W(t);

x
E
(t) = x(t, t) = W(t).

Our task is actually to determine A(t0) and θ(t0) as functions of t0 so that the family of the
local solutions has an envelope. According to the classical theory of envelopes given in the
previous section, the above program can be achieved by imposing that the envelope equation,

dx(t, t0)

dt0
= 0, (3.4)

gives the solution t0 = t . From equation (3.3), we have

dA

dt0
+ εA = 0,

dθ

dt0
+

ε2

8
= 0, (3.5)

where we have used the fact that dA/dt is O(ε) and neglected the terms of O(ε3). Solving
the equations, we have A(t0) = Ā e−εt0/2 and θ(t0) = − ε2

8 t0 + θ̄ , where Ā and θ̄ are constant
numbers. Thus, we get

x
E
(t) = x(t, t) = W0(t) = Ā exp

(
−ε

2
t
)

sin

((
1 − ε2

8

)
t + θ̄

)
, (3.6)

up to O(ε3). Noting that
√

1 − ε2/4 = 1− ε2/8 +O(ε4), one finds that the resultant envelope
function x

E
(t) = W0(t) is an approximate but global solution to equation (3.1).
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Figure 3. The geometrical image of the perturbative construction of the attractive manifold M and
the reduced dynamics of the vector field G on it. M0 and G0 denote the unperturbed ones.

4. The RG reduction of dynamics of a generic evolution equation

The theory of the reduction of evolution equations must give a definite method to find out the
vector field G(s) as well as to construct the attractive manifold M or the function R(s) in
equation (1.5). It is often that these tasks can be achieved in a perturbative way as follows:

ds

dt
= G0(s) + γ(s), R(s) = R0(s) + ρ(s), (4.1)

where R0(s) gives the coordinate of the unperturbed invariant manifold M0 and ρ gives the
deformation of the manifold by the perturbation, as shown in figure 3. The unperturbed vector
field G0(s) governs the reduced dynamics on M0 and γ(s) is the modification of the dynamics.
The important point lies in the fact that the modification of the manifold and the dynamics are
both still function of s parameterizing the unperturbed manifold M0.

Such a view on the reduction of dynamics was emphasized by Kuramoto [14]. It is
remarkable that Bogoliubov gave the notion of invariant manifold in his contribution to the
theory of non-linear oscillators [15]; he also described the fluid dynamical limit of Boltzmann
equation as a construction of a (slow) invariant manifold spanned by the hydrodynamical
quantities embedded in the functional space composed of the single-particle distribution
function [16].

In this section, we show how the renormalization-group method works to make the
reduction of the dynamics of a generic system possessing the possible reduction of dynamics
in the perturbative way [11]: it will be clarified that the system reduction is accomplished by
explicitly constructing the invariant manifold and the slow dynamics on the manifold in the
perturbative way. We emphasize that the initial values are chosen by using a simple formula
for the special solutions to differential equations as in the previous section.

We treat the following rather generic vector equations in this section:

∂tu = Au + εF(u), (4.2)

where ∂tu = ∂u/∂t, A is a linear operator, F is a nonlinear function of u and ε is a small
parameter (|ε| < 1). We assume that A has multiply degenerated zero eigenvalues and other
eigenvalues of A have a negative real part. We assume that A has semi-simple 0 eigenvalues
in the present paper; the case when A has a multidimensional Jordan cell is also treated
in [11].

We are interested in constructing the attractive manifold M at t → ∞ and the reduced
dynamics on it. We try to construct and solve the problem in the perturbation theory by
expanding u as

u(t; t0) = u0(t; t0) + εu1(t; t0) + ε2u2(t; t0) + · · · , (4.3)

with the initial value W(t0) at an arbitrary time t0. The equations in the first few orders read

(∂t − A)u0 = 0, (∂t − A)u1 = F(u0), (∂t − A)u2 = F′(u0)u1, (4.4)
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where

(F′(u0)u1)i =
n∑

j=1

{∂(F ′(u0))i/∂(u0)j }(u1)j (4.5)

is a Freche derivative for the n-dimensional vector.
We suppose that the equation has been solved up to t = t0 and the solution has the

value W(t0) at t0. Actually, the initial value must be determined by the perturbative solution
self-consistently; indeed, u(t) = W(t) is the solution to (4.2) in the global domain. Therefore,
it should be also expanded as follows: W(t0) = W0(t0) + εW1(t0) + ε2W2(t0) + · · · =
W0(t0) + ρ(t0), where ρ(t0) is supposed to be an independent function of W0. They are
not yet known at present but will be determined so that the perturbative expansion becomes
valid. One of the main purposes in this section is to show how sensibly the initial values can
be determined order by order.

In the present paper, we confine ourselves to the case where A has semi-simple 0
eigenvalues. Let the dimension of Ker A be m; AUi = 0 (i = 1, 2, . . . , m). We suppose that
other eigenvalues have negative real parts; AUα = λαUα(α = m + 1,m + 2, . . . , n), where
Re λα < 0. One may assume without loss of generality that Ui’s and Uα’s are linearly
independent.

The adjoint operator A† has the same eigenvalues as A has; A†Ũi = 0(i = 1, 2, . . . , m)

and A†Ũα = λ∗
αŨα (α = m + 1,m + 2, . . . , n). Here, we suppose that Ũi’s and Ũα’s are

linearly independent. Without loss of generality, one can choose the eigenvectors so that
〈Ũi , Uα〉 = 0 = 〈Ũα, Ui〉, with 1 � i � m and m + 1 � α � n. We denote the projection
operators by P and Q which projects onto the kernel of A and the space orthogonal to Ker A,
respectively.

Since we are interested in the asymptotic state as t → ∞, we may assume that the lowest
order initial value belongs to Ker A:

W0(t0) =
m∑

i=1

Ci(t0)Ui = W0[C]. (4.6)

Thus, trivially, u0(t; t0) = e(t−t0)AW0(t0) = ∑m
i=1 Ci(t0)Ui . We note that a natural

parameterization of the invariant manifold in the lowest order M0 is given by the set of
the integral constants C = t (C1, C2, . . . , Cm) being varied.

The first-order equation (4.4) with the initial value W1(t0) which is not yet determined is
formally solved to be

u1(t; t0) = e(t−t0)A[W1(t0) + A−1QF(W0(t0))] + (t − t0)P F(W0(t0)) − A−1QF(W0(t0)).

(4.7)

The first term has a possibility to give rise to a fast motion, which should be avoided and are
analogous to divergent terms in the quantum field theory; the divergent terms are subtracted
away by counter terms, which are analogue to the initial values Wi here. Indeed, it is nice that
the initial value W1(t0) not yet determined can be chosen so as to cancel out the would-be fast
term as follows: W1(t0) = −A−1QF(W0(t0)), which satisfies P W1(t0) = 0 and is a function
solely of C(t0). Thus, we have for the first-order solution, u1(t; t0) = (t − t0)P F − A−1QF,
where the argument of F is W0[C]. Now the invariant manifold is modified to M1 given by

M1 = {u|u = W0 − εA−1QF(W0)}. (4.8)

If one stops to this order, the approximate solution reads

u(t; t0) = W0 + ε{(t − t0)P F − A−1QF}. (4.9)
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Then, the RG equation ∂u/∂t0|t0=t = 0 gives Ẇ0(t) = εP F(W0(t)), which is reduced to an
m-dimensional coupled equation,

Ċi(t) = ε〈Ũi , F(W0[C])〉 (i = 1, 2, . . . , m). (4.10)

One now sees that εP F(W0[C]) gives the vector filed G0(s) with C being identified with s
in equation (4.1). The global solution representing a trajectory on the invariant manifold up
to this order is given by

u(t) = u(t; t0 = t) =
m∑

i=1

Ci(t) Ui − εA−1Q F(W0[C]), (4.11)

with C(t) being the solution to (4.10).
In short, we have derived the invariant manifold as the initial value represented by (4.11)

and the reduced dynamics (4.10) on it in the RG method in the first-order approximation.
The above procedure can be easily extended to second and higher orders and the

modification of the vector field γ(s) in equation (4.1) is readily obtained, as shown in [11].

5. Fluid dynamical limit of Boltzmann equation

In this section, we apply the RG method formulated in the previous sections and in [11] to
obtain the fluid dynamical limit of the Boltzmann equation [17]. This is an example of reducing
a kinetic equation to a slower dynamics [12]. In this paper, we complete the derivation of the
Navier–Stokes equation with some corrections to the previous treatment [12]; we shall also
work out to give the explicit formulae of the transport coefficients.

5.1. Basics of the Boltzmann equation

The Boltzmann equation [17, 18] is a transport equation which describes the time evolution
of one-particle distribution function defined in the phase space:

∂

∂t
f (r,v, t) + v · ∇f (r,v, t) = I [f ](r,v, t). (5.1)

The right-hand side of the above equation is called the collision integral,

I [f ](r,v, t) =
∫

d3v1

∫
d3v2

∫
d3v3ω(v,v1|v2,v3)(f (r,v2, t)f (r,v3, t)

− f (r,v, t)f (r,v1, t)), (5.2)

where ω(v,v1|v2,v3) denotes the transition probability which comes from a microscopic
two-particle interaction. We remark that the transition probability ω(v,v1|v2,v3) contains
delta functions reflecting energy–momentum conservation law and satisfies the following
relations based on the indistinguishability of identical particles and the time reversal
symmetry in the scattering process: ω(v,v1|v2,v3) = ω(v1,v|v3,v2) = ω(v2,v3|v,v1) =
ω(v3,v2|v1,v).

To make explicit the correspondence to the general formulation given in the previous
section [11], one may treat the argument v as a discrete variable [14]. Discriminating the
arguments (r, t) and v, we use v as a subscript for the distribution function: f (r,v, t) =
fv(r, t) ≡ [

f(r, t)
]
v
. Then, the Boltzmann equation now reads

∂

∂t
fv(r, t) + v · ∇fv(r, t) = I [f ]v(r, t), (5.3)
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where

I [f ]v(r, t) ≡
∑
v1

∑
v2

∑
v3

ω(v,v1|v2,v3)
(
fv2(r, t)fv3(r, t) − fv(r, t)fv1(r, t)

)
. (5.4)

As promised, we apply the RG method to extract the low-frequency dynamics from a
given kinetic equation; in other words, we achieve the coarse graining of temporal scale by
the RG method. We introduce ε in front of spatial derivative of the Boltzmann equation to
make the application of the perturbation theory possible:

∂

∂t
fv(r, t) = I [f ]v(r, t) − εv ·∇fv(r, t). (5.5)

5.2. Procedure 1: invariant manifold and approximate solution

As was done in the previous sections, we first expand the initial values as follows:

fv(r, t0) = f (0)
v (r, t0) + εf (1)

v (r, t0) + ε2f (2)
v (r, t0) + · · · . (5.6)

Then let f̃ v(r, t; t0) be an approximate solution around t = t0, which obeys equation (5.5)
with the initial condition at t = t0: f̃ v(r, t0; t0) = fv(r, t0). We try to solve f̃ v(r, t; t0) by
the perturbation theory by expanding it as

f̃ v(r, t; t0) = f̃ (0)
v (r, t; t0) + εf̃ (1)

v (r, t; t0) + ε2f̃ (2)
v (r, t; t0) + · · · , (5.7)

with the respective initial conditions; f̃ (µ)
v (r, t0; t0) = f (µ)

v (r, t0) for µ = 0, 1, 2, . . . .

Substituting the above expansion in (5.5), we obtain the series of the perturbative equations.
The lowest few equations read

∂

∂t
f̃ (0)

v = I [f ]v

∣∣∣∣∣
f=f̃ (0)

, (5.8)

∂

∂t
f̃ (1)

v =
∑

k

∂

∂fk
I [f ]v

∣∣∣∣∣
f=f̃ (0)

f̃
(1)

k − v ·∇f̃ (0)
v , (5.9)

∂

∂t
f̃ (2)

v =
∑

k

∂

∂fk
I [f ]v

∣∣∣∣∣
f=f̃ (0)

f̃
(2)

k − v ·∇f̃ (1)
v . (5.10)

Here, a remark is in order: we have actually used the linearized Boltzmann equation
[18] neglecting the second-order term of f̃ (1) in (5.10). It is known that the neglected
term produces the so-called Burnett terms which are absent in the usual Navier–Stokes
equations [19].

5.3. Procedure 2: order-by-order analysis

Here we summarize the significance of each order of equation:

• Zeroth order. The zeroth-order equation is in general a nonlinear algebraic equation which
determines the lowest order invariant manifold M0(≡ f̃ (0)). The special solution of this
equation includes some integration constants. It turns out that these would-be constants
become the slow variables on M0 by the RG equation.



8098 T Kunihiro and K Tsumura

• First order. The first-order equation is a linear differential equation because we consider
the dynamics near M0. First, we derive the zero modes from the eigen vectors of its
time evolution operator. Then, we define the appropriate inner product and projection
operator to the kernel space spanned by the zero modes. Using these definitions, we
solve the linear differential equation. The condition that the fast modes orthogonal to the
zero modes vanish determine the initial condition in this order and thereby the first-order
invariant manifold M1(≡ f̃ (1)); the first-order perturbation gives the deformation of the
invariant manifold from M0 to M1. The coordinates to describe the slow modes are still
defined on M0.

• Second and higher orders. The second-order equation is a linear differential equation
with the same time evolution operator. We can solve the second-order equation with
the same procedure as the first one. The second-order invariant manifold M2(≡ f̃ (2)) is
determined in the same manner as in the first order. This procedure is able to be continued
up to arbitrary orders. Although the successive deformation of the invariant manifold is
obtained, the coordinates for the slow variables are still on M0.

Now we are interested in the slow motion which may be realized asymptotically as
t → ∞. Therefore, we put the stationary condition on (5.8) and the zeroth-order equation
becomes the following nonlinear algebraic equation:

∂

∂t
f̃ (0)

v = 0 	⇒ I [f ]v

∣∣∣∣∣
f=f̃ (0)

= 0. (5.11)

The zeroth-order approximate solution f̃ (0) is the fixed point of the collision integral, and thus
is a local equilibrium distribution function or Maxwellian:

f̃ (0)
v (r, t; t0) = n(r, t0)

[
m

2πT (r, t0)

] 3
2

exp

[
−m|v − u(r, t0)|2

2T (r, t0)

]
≡ f eq

v (r; t0). (5.12)

Here, the local density n(r, t0), local temperature T (r, t0) and local flux u(r, t0) are all
dependent on the initial time t0 and the space coordinate r but independent of time t. The zeroth-
order invariant manifold f (0) is given by the initial condition: f (0)

v (r, t0) = f̃ (0)
v (r, t0; t0) =

f
eq
v (r; t0). The zeroth-order result is summarized as follows:{

f̃ (0)(t) = f eq,

f (0)(t0) = f eq.
(5.13)

The first-order equation now reads

∂

∂t
f̃ (1) = Af̃ (1) + F , (5.14)

where the time evolution operator A and the inhomogeneous term F are defined by

Avk ≡ ∂

∂fk
I [f ]v

∣∣∣∣∣
f=f eq

, Fv ≡ −v · ∇f eq
v , (5.15)

respectively.
As mentioned above, we must clarify the properties of the linear operator A to proceed

further. For this purpose, we convert A to the following operator:

Lvk ≡ f eq-1
v Avkf

eq
k = −

∑
v1

∑
v2

∑
v3

ω(v,v1|v2,v3)f
eq
v1

(δvk + δv1k − δv2k − δv3k), (5.16)

which is called the collision operator [20, 21].
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Let us define the inner product between arbitrary vectors, ϕ and ψ, by

〈ϕ, ψ〉 ≡
∑

v

f eq
v ϕvψv. (5.17)

We remark that this definition of the inner product is more adequate than that given in [12].
A nice point is that L becomes self-adjoint with this inner product; 〈ϕ, Lψ〉 = 〈Lϕ, ψ〉. It is
essential for the following discussions that L has the zero modes and dim[Ker L] = 5 [18]:

Lϕ0
α = 0 (α = 0, 1, 2, 3, 4) (5.18)

where the normalized five vectors ϕ0
α are given as follows with δv ≡ v − u:

ϕ0
0v ≡ 1√

n
, (5.19)

ϕ0
iv ≡ 1√

n

√
m

T
δvi for i = 1, 2, 3, (5.20)

ϕ0
4v ≡ 1√

n

√
2

3

(
m

2T
|δv|2 − 3

2

)
, (5.21)

with
〈
ϕ0

α, ϕ0
β

〉 = δαβ . The other eigenvalues are found to be negative; in fact, one can show
that 〈ϕ, Lϕ〉 � 0 for all ϕ, which means that the kinetic dynamics near the zeroth-order
solution f eq has an attractive slow manifold.

Next, we define the following projection operator P onto the kernel of L,

[Pψ]v ≡
4∑

α=0

ϕ0
αv

〈
ϕ0

α, ψ
〉
, (5.22)

and introduce Q ≡ 1 − P as the projection operator to the space complement to Ker L.
Multiplying equation (5.14) by the inverse matrix of f eq, we have

∂

∂t
(f eq−1f̃ (1)) = L(f eq−1f̃ (1)) + (f eq−1F ), (5.23)

where f
eq
vk ≡ f

eq
v δvk. The first-order solution is readily obtained as

f̃ (1)(t) = e(t−t0)A[f (1)(t0) + A−1Q̄F ] + (t − t0)P̄F − A−1Q̄F , (5.24)

where P̄ ≡ f eqPf eq−1 and Q̄ ≡ f eqQf eq−1.
The first-order initial value is now determined so that the would-be fast mode disappear,

which in turn gives the deformation of the invariant manifold and thereby the first-order
invariant manifold. Thus, we have for the first-order solution{

f (1)(t0) = −A−1Q̄F ,

f̃ (1)(t) = (t − t0)P̄F − A−1Q̄F .
(5.25)

Then, the second-order equation reads
∂

∂t
f̃ (2) = Af̃ (2) + (t − t0)H + I, (5.26)

where

Hv ≡ −v · ∇[P̄F ]v, Iv ≡ v ·∇[A−1Q̄F ]v. (5.27)

The solution to this equation is found to be

f̃ (2)(t) = e(t−t0)A[f (2)(t0) + A−2Q̄H + A−1Q̄I] + 1
2 (t − t0)

2[P̄H] + (t − t0)[P̄I − A−1Q̄H]

− [A−2Q̄H + A−1Q̄I]. (5.28)
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Then, the second-order results are summarized as follows:{
f (2)(t0) = −[A−2Q̄H + A−1Q̄I],

f̃ (2)(t) = 1
2 (t − t0)

2[P̄H] + (t − t0)[P̄I − A−1Q̄H] − [A−2Q̄H + A−1Q̄I].
(5.29)

As a result of the above order-by-order analysis, the invariant manifold and the
approximate solution up to the second order are found to be

f(t0) = f eq − εA−1Q̄F − ε2[A−2Q̄H + A−1Q̄I], (5.30)

f̃(t) = f eq + ε((t − t0)P̄F − A−1Q̄F ) + ε2
(

1
2 (t − t0)

2[P̄H]

+ (t − t0)[P̄I − A−1Q̄H] − [A−2Q̄H + A−1Q̄I]
)
. (5.31)

Note the appearance of secular terms in (5.31).

5.4. Procedure 3: envelope equation or RG equation

Equation (5.31) shows that the local approximate solution moves away from the invariant
manifold as |t − t0| becomes large owing to the secular terms. The appearance of the secular
terms invalidates the perturbation expansion of the solution around t � t0. This evolution is
described by the microscopic time described by the kinetic equation (5.5). We can obtain the
global solution valid in a global domain by constructing the envelope of these diverging local
solutions parameterized by t0. The envelope equation or the RG equation reads

∂

∂t0
f̃(t)

∣∣∣∣∣
t0=t

= 0 or
∂

∂t0
f̃ v(r, t; t0)

∣∣∣∣∣
t0=t

= 0, (5.32)

which is reduced to

0 = ḟ eq
v − ε[P̄F ]v − ε2[P̄I − A−1Q̄H]v − ∂

∂t
g{ε[A−1Q̄F ]v + ε2[A−2Q̄H + A−1Q̄I]vg}.

(5.33)

This RG equation is an equation of motion governing the time evolution of the five slow
variables n(r, t), T (r, t) and u(r, t) in f eq. If this equation is solved exactly and these
variables are substituted into (5.30) at t0 = t , we can construct the macroscopic time evolution
of the one-particle distribution function f(t). In the discussion below we reduce the master
equation (5.33) to a five-dimensional coupled equation. Applying the projection operator P̄

from the left of (5.33), we obtain the following:

0 = [P̄ ḟ eq]v − ε[P̄F ]v − ε2[P̄I]v −
[
P̄

∂

∂t
(εA−1Q̄F + ε2(A−2Q̄H + A−1Q̄I))

]
v

.

(5.34)

We note that the time derivative does hit to the linear operator A which depends on the zeroth-
order distribution function f eq, which is in contrast to that treated in the previous section; we
remark that this point was not fully recognized in [12].

Now multiplying equation (5.34) by the zero modes ϕ0
αv and summing up it in terms of

v, we have

0 =
∑

v

ϕ0
αvḟ

eq
v − ε

∑
v

ϕ0
αvFv − ε2

∑
v

ϕ0
αvIv for α = 0, 1, 2, 3, 4. (5.35)

Here, we have used the following relations obtained from the definitions (5.17) and (5.22):∑
v

ϕ0
αv[P̄ψ]v =

∑
v

ϕ0
αvψv,

∑
v

ϕ0
αv[Q̄ψ]v = 0, (5.36)
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and the equality∑
v

ϕ0
αv

∂

∂t
g{ε[A−1Q̄F ]v + ε2[A−2Q̄H + A−1Q̄I]v} = 0, (5.37)

which follows from the fact that ϕ̇0
α ∈ Ker L. Note that (5.35) has the same information as

the RG equation (5.33).

5.5. Explicit reduction to Navier–Stokes equation: transport coefficients

We now show that equation (5.35) is nothing but the Navier–Stokes equation [18]. Performing
the summation in terms of v, we find that the first and second terms of equation (5.35) are
evaluated to be

∑
v

ϕ0
0vḟ

eq
v =

(
1√
n

1

m

)
mṅ, (5.38)

∑
v

ϕ0
ivḟ

eq
v =

(
1√
n

√
m

T

1

m

)
mnu̇i for i = 1, 2, 3, (5.39)

∑
v

ϕ0
4vḟ

eq
v =

(
1√
n

√
2

3

1

T

)
n

3

2
Ṫ , (5.40)

and

∑
v

ϕ0
0vFv = −

(
1√
n

1

m

)
m∇ · (nu), (5.41)

∑
v

ϕ0
ivFv = −

(
1√
n

√
m

T

1

m

)
(mnu · ∇ui + ∇ i (nT )) for i = 1, 2, 3, (5.42)

∑
v

ϕ0
4vFv = −

(
1√
n

√
2

3

1

T

)
(nu · ∇

(
3

2
T

)
+ nT ∇ ·u). (5.43)

In a similar way, the third terms of equation (5.35) are evaluated to be∑
v

ϕ0
0vIv = 0, (5.44)

∑
v

ϕ0
ivIv =

(
1√
n

√
m

T

1

m

)
∇j 〈T ij , L−1Qf eq−1F 〉 for i = 1, 2, 3, (5.45)

∑
v

ϕ0
4vIv =

(
1√
n

√
2

3

1

T

)(
∇ i〈J i , L−1Qf eq−1F 〉 + 〈T ij , L−1Qf eq−1F 〉1

2
(∇ iuj + ∇jui)

)
,

(5.46)

where T ij and J i are defined as

T ij
v ≡ mδviδvj , J i

v ≡ (
1
2m|δv|2 − 5

2T
)
δvi . (5.47)

Here, we have replaced ϕ0
4vδv

i by J i
v because δvi belongs to Ker L and its inner product with

[L−1Qf eq−1F ]v is null.
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To proceed further, the explicit representation of [L−1Qf eq−1F ]v is necessary. By using
the projection operator (5.22), we have

[L−1Qf eq−1F ]v = − 1

T

∑
k

L−1
vkg

[
T

ij

k

1

2

(
∇ iuj + ∇j ui − 2

3
δij∇ · u

)
+ J i

k∇ i ln T

]
.

(5.48)

Following the above equation and the space rotational symmetry [20, 21], we arrive at

〈T ij , L−1Qf eq−1F 〉 = 2η 1
2

(∇ iuj + ∇jui − 2
3δij∇ ·u

)
, (5.49)

〈J i , L−1Qf eq−1F 〉 = λ∇ iT , (5.50)

where η and λ are the so-called transport coefficients defined by

η ≡ − 1

T

∑
vk

f eq
v T 12

v L−1
vkT 12

k = 1

T

∫ ∞

0
dτ 〈T 12(0),T 12(τ )〉, [T ij (τ )]v ≡

∑
k

[eLτ ]vkT
ij

k ,

(5.51)

λ ≡ − 1

T 2

∑
vk

f eq
v J 1

v L−1
vkJ 1

k = 1

T 2

∫ ∞

0
dτ 〈J1(0)J1(τ )〉, [J i (τ )]v ≡

∑
k

[eLτ ]vkJ i
k.

(5.52)

We note that the transport coefficients, shear viscosity η and heat conductivity λ, are obtained
as the correlation function of the microscopic currents (5.47) like Kubo formula [22].

Putting back ε = 1, the reduced RG equations (5.35) are found to be

ṅ + ∇ · (nu) = 0, (5.53)

mnu̇i + mnu · ∇ui = −∇jP ji for i = 1, 2, 3, (5.54)

nė + nu · ∇ε = −∇ · J − P ijDij , (5.55)

where

e ≡ 3
2T , p ≡ nT , Dij ≡ 1

2 (∇ iuj + ∇jui), (5.56)

P ij ≡ δijp − 2ηDij − (− 2
3η

)
δij∇ · u, J ≡ −λ∇T . (5.57)

These equations (5.53)–(5.55) are identified with the fluid dynamic equations with dissipation,
i.e., the Navier–Stokes equation [18].

In summary, we have shown that the Navier–Stokes equations can be neatly reproduced
as the fluid dynamical limit of the Boltzmann equation in the RG method.

6. Summary and concluding remarks

We have shown that the RG gives a powerful and systematic method for the reduction of
the dynamics and also provides a transparent way for the construction of the attractive slow
manifold. We have indicated the relation of the underlying mathematics of the RG method with
the classical theory of envelopes in mathematical analysis. Although the uses of envelopes
for physics problem were first noted by M Suzuki in the theory of CAM (coherent anomaly
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method) [23] for the critical phenomena in statistical physics, the usefulness of the notion
of envelopes was not well recognized: we remark that even the RG method in QFT, such as
the improvement of the effective potential, can be nicely interpreted in terms of envelopes, as
shown in [7].

We have obtained the Navier–Stokes equation from the Boltzmann equation by applying
the RG method: we have worked out for constructing the projection operators and thus
explicitly given the forms of the transport coefficients in terms of the one-particle distribution
function.

The RG method presented here has a wide range of applicabilities even being confined
to the transport equations [12]: it can be applied to obtain the Boltzmann equation from
the Liouville equation. The Focker–Planck equation is equally obtained from the Langevin
equation by this method. Furthermore, the further reduction of the Focker–Planck equation
can also be done by the RG method.

As for the reduction of the hydrodynamic equation from the Boltzmann equation, it would
be interesting to apply the present method to the relativistic case. We also mention that the
present method is also applicable to extract the critical slow dynamics around the critical point
of phase transitions [9, 11]. It would also be interesting to apply the method for extracting the
slow dynamics, say, around the QCD critical endpoint [24].
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